ArcGIS REST Services Directory Login | Get Token
JSON | SOAP

VaShlInv_SMM/ChesapeakeConservancy2018LULC (ImageServer)

View In:   ArcGIS JavaScript   ArcGIS Online Map Viewer   ArcGIS Earth

Service Description:

Chesapeake Conservancy, U.S. Geological Survey (USGS) and University of Vermont Spatial Analysis Lab (UVM SAL) are collaborating, with funding from the Chesapeake Bay Program (CBP), to produce 1-meter resolution land cover and land use/land cover datasets for the Chesapeake Bay watershed regional area (206 counties, over 250,000 km2). These data are foundational, authoritative, and transformative looks at the landscape and its management throughout the region.

The production of the CBP 1-meter “land cover” data involves the identification and classification of image objects derived from aerial imagery (National Agriculture Imagery Program, NAIP), above-ground height information derived from LiDAR, and other ancillary data. Land cover represents the surface characteristics of the land with classes such as impervious cover, tree canopy, herbaceous, and barren. In contrast, “land use” represents how humans use and manage the land with classes such as turf grass, cropland, and timber harvest. Producing land use from land cover data requires a variety of ancillary datasets combined with spatial rules that leverage the contextual information inherent in the land cover data. The CBP’s land use/land cover (LULC) data are so named because they represent a combination of cover and use classes (e.g., extractive-barren, solar-herbaceous) that are critical for understanding the impact of human activities on the Chesapeake Bay. For example: one land cover class (herbaceous vegetation) encapsulates both the highest polluting land use (e.g., corn production) or one of the lowest (e.g., natural succession). The LULC data contextualize the land cover classes for decision-making, such as informing outcomes in the Chesapeake Bay Watershed Agreement and serving as the basis for developing the next generation of watershed and land change models.

For more information, please visit https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/lulc-data-project-2022/



Name: VaShlInv_SMM/ChesapeakeConservancy2018LULC

Description:

Chesapeake Conservancy, U.S. Geological Survey (USGS) and University of Vermont Spatial Analysis Lab (UVM SAL) are collaborating, with funding from the Chesapeake Bay Program (CBP), to produce 1-meter resolution land cover and land use/land cover datasets for the Chesapeake Bay watershed regional area (206 counties, over 250,000 km2). These data are foundational, authoritative, and transformative looks at the landscape and its management throughout the region.

The production of the CBP 1-meter “land cover” data involves the identification and classification of image objects derived from aerial imagery (National Agriculture Imagery Program, NAIP), above-ground height information derived from LiDAR, and other ancillary data. Land cover represents the surface characteristics of the land with classes such as impervious cover, tree canopy, herbaceous, and barren. In contrast, “land use” represents how humans use and manage the land with classes such as turf grass, cropland, and timber harvest. Producing land use from land cover data requires a variety of ancillary datasets combined with spatial rules that leverage the contextual information inherent in the land cover data. The CBP’s land use/land cover (LULC) data are so named because they represent a combination of cover and use classes (e.g., extractive-barren, solar-herbaceous) that are critical for understanding the impact of human activities on the Chesapeake Bay. For example: one land cover class (herbaceous vegetation) encapsulates both the highest polluting land use (e.g., corn production) or one of the lowest (e.g., natural succession). The LULC data contextualize the land cover classes for decision-making, such as informing outcomes in the Chesapeake Bay Watershed Agreement and serving as the basis for developing the next generation of watershed and land change models.

For more information, please visit https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/lulc-data-project-2022/



Single Fused Map Cache: false

Extent: Initial Extent: Full Extent: Pixel Size X: 1.0

Pixel Size Y: 1.0

Band Count: 1

Pixel Type: U8

RasterFunction Infos: {"rasterFunctionInfos": [{ "name": "None", "description": "", "help": "" }]}

Mensuration Capabilities: Basic

Inspection Capabilities:

Has Histograms: true

Has Colormap: false

Has Multi Dimensions : false

Rendering Rule:

Min Scale: 0

Max Scale: 0

Copyright Text: Chesapeake Conservancy

Service Data Type: esriImageServiceDataTypeGeneric

Min Values: 11

Max Values: 95

Mean Values: 34.900435785883

Standard Deviation Values: 27.484813151489

Object ID Field:

Fields: None

Default Mosaic Method: Center

Allowed Mosaic Methods:

SortField:

SortValue: null

Mosaic Operator: First

Default Compression Quality: 75

Default Resampling Method: Bilinear

Max Record Count: null

Max Image Height: 4100

Max Image Width: 15000

Max Download Image Count: null

Max Mosaic Image Count: null

Allow Raster Function: true

Allow Copy: true

Allow Analysis: true

Allow Compute TiePoints: false

Supports Statistics: false

Supports Advanced Queries: false

Use StandardizedQueries: true

Raster Type Infos: Has Raster Attribute Table: true

Edit Fields Info: null

Ownership Based AccessControl For Rasters: null

Child Resources:   Info   Raster Attribute Table   Histograms   Statistics   Key Properties   Legend   Raster Function Infos

Supported Operations:   Export Image   Identify   Measure   Compute Histograms   Compute Statistics Histograms   Get Samples   Compute Class Statistics   Query Boundary   Compute Pixel Location   Compute Angles   Validate   Project